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Today we will discuss …

2

Today…
1. What is empirical modelling?
2. Background on the carbon cycle
3. Calculating forest growth metrics
4. Constructing a simple model of tree 

growth/mortality
5. Scaling from individuals to populations

Objectives:

• Understand how population dynamics can be 
modelled.

• Develop awareness of the factors driving 
variation in forest biomass dynamics.

• Gain some experience converting 
maths to R code.



Seen this before in Stace’s lectures. 

Covered conceptual models. 

Physical models are outside the scope of this course really, we don’t have the 
resources.

Leaves mathematical models.

We can split mathematical models into mechanistic and empirical models.

In this module we will be focusing largely on empirical models.

In Luke’s module, which comes after mine, he will focus mostly on mechanistic 
models.
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Stace covered some of this in his early lectures, but I wanted to recap and add a bit 
more depth to our distinction of empirical and mechanistic models.

As we shift our thinking to empirical modelling, I thought it would be valuable to 
define empirical modelling and contrast it to mechanistic modelling. 

Although I’m presenting empirical and mechanistic models as two distinct classes of 
model, in reality it’s a continuum from very mechanistic to very empirical.

Empirical models rely predominantly on using observed relationships among real data 
to understand a system. This means they are also limited by the availability of that 
data.

Empirical models don’t make too many assumptions about the underlying structure 
of the system, all that complexity is expressed through the observed interaction of 
the variables in the model.

On the other hand, mechanistic models predominantly rely on our understanding of 
the underlying structure of the system to describe the overall behaviour of the 
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• “Top-down”
• Uses observed relationships among data 

to understand system
• Limited by available data

• Good at:
• describing an unknown system
• quantifying observed relationships

• Sometimes:
• overly simplistic - not realistic
• wrongly attribute causation

Empirical vs. Mechanistic modelling

Empirical Mechanistic
• “Bottom-up”
• AKA process-based modelling
• Uses rules and assumptions of internal 

structure to understand system
• Limited by understanding of system

• Good at:
• making predictions outside 

observable bounds
• understanding system behaviour

• Sometimes:
• impractical to parameterise



system.

Because empirical models don’t make many assumptions about the system, they are 
very appropriate for describing a system which we don’t know much about. 

On the other hand, mechanistic models are better for understanding more deeply the 
behaviour of a system. Mechanistic models are also good at making predictions 
outside the observable bounds of the system. If we make some basic assumptions 
about how the system works, we can do experiments where we tweak the 
parameters of the model to see how the system would behave under conditions that 
we haven’t been able to observe in real life.

Because of the way empirical and mechanistic models differ in their approach to 
describing a system, we can also refer to these models as either “top-down” or 
“bottom-up”. I.e. mechanistic models start small, maybe our understanding of how 
photosynthesis works at the cellular level, and build up to describing the productivity 
of a whole forest. Empirical models start big, with the relationships we observe in real 
life.

Empirical models are sometimes criticized for being overly simplistic, and because of 
their high level approach sometimes they are accused of wrongly attributing 
causation. 

Similarly, mechanistic models have their drawbacks. They are highly limited by our 
understanding of the system. Additionally, mechanistic models can sometimes be 
very creaky, they are hard to parameterise, and because of their complexity, can 
break if pushed outside their boundaries.
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Another way to think about this variation in model type comes from Richard Levins, 
who described models as a trade-off between Generality, Precision, and Realism. His 
philosophy was that any model could maximise two of the three parameters, but not 
all three. A model which was perfectly precise, generalizable to every situation, and 
totally realistic in its mechanics would not be a model anymore, it would be an 
identical copy of reality.

So let’s think about different models which maximise two of the parameters.

By the way, all the references at the bottom of the slides are included in the lecture 
slides at the end, so you can read further on the subject.
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Generality - Precision - Reality

Levins et al. (1966)

A. General and Precise
- e.g. statistical models
- Good for: describing systems

B. Precise and Realistic
- e.g. mechanistic models
- Good for: understanding system 
behaviour

C. Realistic and General
- e.g. conceptual models
- Good for: theory development

Re
ali

sm
Precision

Generality

AB

C

Must also consider tractability -
can we parameterize the model?



A statistical model like a linear regression can be very general while also being very 
precise. With a statistical model we know what our uncertainty on any arbitrary 
estimate is. They are good at describing a system, but rely on having data to work 
with. But statistical models are not particularly realistic. In this example, there 
appears to be a fairly tight correlation between the diameter and height of trees. But, 
from this model we get little clue as to what the underlying mechanism is. Due to the 
limitations of the data, we also have fairly hard limits on the maximum diameter from 
which we can reliably estimate height.
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Generality - Precision - Reality

Feldpausch et al. (2011)

Linear regression of tree diameter vs. height
A. General and Precise

- e.g. statistical models
- Good for: describing systems

B. Precise and Realistic
- e.g. mechanistic models
- Good for: understanding system 
behaviour

C. Realistic and General
- e.g. conceptual models
- Good for: theory development

Must also consider tractability -
can we parameterize the model?



A highly mechanistic model is both precise and realistic. This model of photosynthesis 
at the cell level, which is far too complicated for me to fully understand, uses known 
rates of chemical diffusion and light use efficiency to predict the production of ATP. 
This model is not very general however. It describes one thing very well, but cannot 
model photosynthesis of a CAM plant for example, which uses a different 
photosynthetic pathway.
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Generality - Precision - Reality

Zhu et al. (2013)

Photosynthesis at the cell levelA. General and Precise
- e.g. statistical models
- Good for: describing systems

B. Precise and Realistic
- e.g. mechanistic models
- Good for: understanding system 
behaviour

C. Realistic and General
- e.g. conceptual models
- Good for: theory development

Must also consider tractability -
can we parameterize the model?



Conceptual models can be very realistic and highly general. They are not constrained 
by data availability or deep understanding of the basic mechanics of the system. 
However, they are not very precise at all. Conceptual models don’t use numeric 
values, often only as much as directional increase or decrease of a given variable.

Going back to the PGR triangle, it would be possible to have a model which sits 
squarely in the middle of the three trade-offs, being equally general, precise, and 
realistic, but then we have to think about the model tractability. There’s no point in 
designing a model that you then can’t parameterise. 

Ultimately different models are useful for different things, and as long as you 
remember that, there’s no need to think of any model type being inherently better or 
worse than another.
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Generality - Precision - Reality

Staver et al., (2011)

Savanna tree-grass interaction

Fire suppression management

Increased rainfall

Atmospheric CO2 enrichment

Increased soil fertility

Open canopy Closed canopy

Tree growth Less fire

Trees
outcompete

grasses
Closed canopy

Frequent and  
intense fire Tree mortality

Open canopyGrass growth

A. General and Precise
- e.g. statistical models
- Good for: describing systems

B. Precise and Realistic
- e.g. mechanistic models
- Good for: understanding system 
behaviour

C. Realistic and General
- e.g. conceptual models
- Good for: theory development

Must also consider tractability -
can we parameterize the model?



Now we move onto some background on the content I’m going to teach today.

Carbon cycle

The simple version
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The simple version (conceptual model):

• CO2 flux to atmosphere 
via respiration, combustion

• CO2 flux from atmosphere
via photosynthesis
C stored in biomass, soil, 
deep geological stores

The carbon cycle



The complex version
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Canadell et al. (2021)

The more complex version 
(empirical/mechanistic):

• Many sources and sinks,
with numeric estimates 
of magnitude and 
uncertainty.

• Ability to forecast by 
changing parameters.

• Interactions among 
state variables.

The carbon cycle



Plots from the global carbon budget. 

Modelled estimates of carbon emitted or sequestered by different pools.

Fossil fuel emissions are rising

Ocean sink is clearly increasing.

Land sink appears to be increasing, but there’s lots of uncertainty in the estimates of 
the sink, and lots of inter-annual variability.
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Balancing the carbon budget
• Fossil fuel emissions

continue to rise.
• The biosphere 

appears to be 
responding.

• Increase in 
terrestrial and 
oceanic carbon sink.

• But lots of variation 
and uncertainty on 
estimates.

Friedlingstein et al. (2021)



This map comes from another mechanistic model, which shows that most terrestrial 
ecosystems appear to be sequestering more CO2 than they release (blue areas). 
Some hotspots of high emission (red areas).

Not a satellite image, a modelled estimate. 

The model behind this map uses assumptions about the behaviour of terrestrial 
ecosystems combined with observations to predict their response to climate and 
land-use change. 

These models need to be parameterized to provide realistic estimates of the 
terrestrial carbon flux.

We can use empirical modelling techniques to describe the complex behaviour of 
ecosystems using observed data.
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The terrestrial carbon sink

Most terrestrial 
ecosystems appear to 
be sequestering more 
carbon than they emit.

But these coarse 
models need to be 
ground-truthed.

How can we use 
empirical modelling to 
measure the forest 
carbon sink?

Sitch et al. (2015)



Zooming in a bit further, we can create a conceptual model of internal carbon fluxes 
in a forested ecosystem. 

GPP is the rate of atmospheric carbon uptake by the ecosystem, i.e. how much CO2 is 
fixed during photosynthesis.

Some of this is then returned to the atmosphere via autotrophic respiration, and 
some is fixed into biomass, whether that is leaves, wood, or roots.

These components can die, and be sent to other carbon pools in the system where 
they eventually decompose and are returned to the atmosphere via heterotrophic 
respiration, or they can be combusted by fire and sent back to the atmosphere that 
way.

Luke will go into much further detail on parameterizing this conceptual model in his 
sessions.

Just know that this is a model, it doesn’t perfectly represent reality. In reality, for
example, not all NPP is fixed into biomass, some is fixed in sugars and non-structural 
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Zooming in: forest carbon fluxes

• GPP = Gross Primary Production
• NPP = Net Primary Production

• Ra = Autotrophic respiration
• Rh = Heterotrophic respiration

We can measure 
growth, mortality, and 
recruitment of juveniles 
in the field to track 
population dynamics.

We can use these 
measurements to build 
models of forest carbon 
dynamics and estimate 
the terrestrial carbon 
sink.

Bloom et al. (2016)



carbohydrates that act as energy stores. 
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Using data from forest trees, we can parameterise this model by measuring the 
growth of the woody component of the living carbon pool and the flux of wood from 
the living pool to the dead pool.

With sufficient data, we can also partition the decomposition and fire fluxes to the 
atmosphere.

In addition, using forest tree data, we can partition the growth flux into the 
recruitment of new trees into the system, and the growth of existing trees.
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Zooming in: forest carbon fluxes

• GPP = Gross Primary Production
• NPP = Net Primary Production

• Ra = Autotrophic respiration
• Rh = Heterotrophic respiration

We can measure 
growth, mortality, and 
recruitment of trees in 
the field to track 
population dynamics.

We can use these 
measurements to build 
models of forest carbon 
dynamics and estimate 
the terrestrial carbon 
sink.



When we measure the carbon dynamics of forest ecosystems in the field, we 
generally do it with permanent sample plots. These are circles or rectangle patches of 
forest, within which we repeatedly measure every tree stem over a certain size over a 
number of years. We record the tree species, the stem diameter, the height of the 
tree, whether the tree is alive or dead, and potentially many other things that tell us 
about biomass contained in a tree, or the factors which might govern its growth rate 
and risk of mortality. 

Stem diameter is most often measured with a tape measure at a particular height on 
the trunk, or sometimes with these things called dendro-bands, which more precisely 
measure the growth of a stem by stretching a spring.

To re-measure the same tree stems over time, we generally nail a metal tag into the 
stem which has a stamped number on it.
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Field observations
• Tree species
• Stem diameter
• Tree height
• Mortality events
• Wood density
• Canopy architecture
• Number of stems
• Spatial distribution
• Recruitment (seedlings)



So, given the data we have available, we can re-arrange this original model of the 
carbon cycle, which is centred around GPP, into a model that is centred around NPP, 
that is the production of woody biomass. 

Here we have inputs to the woody pool as the recruitment of new stems, the growth 
of those stems, and the death of those stems.
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Zooming in: forest carbon fluxes

We can re-arrange the 
conceptual model to 
highlight the parts of the 
system we can measure.

GPP-centric model:

NPP-centric model:



In the field as I mentioned we record the diameter, height and tree species of each 
stem. We can use these measurements to estimate the biomass of the tree using 
something called an allometric model.

Allometric models are essentially an equation, an empirical model, which relate non-
destructive measurements of trees to biomass. These models are calibrated by 
destructively harvesting many trees and measuring their biomass manually, which 
provides values for the numeric constants in the model.

I think you have heard about these before?

From the tree species we can get an estimate of wood density
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Chave et al. (2014), Réjou-Méchain et al. (2017), Sileshi (2014)

Measuring growth from field measurements
Allometric equations (models) relate diameter and height
measurements, and species wood density to biomass (Mg) 
for an individual:

𝐵 = 0.0673× 𝜌×𝐻×𝐷! ".$%&/1000

𝜌 = wood density (g cm-3)
𝐻 = tree height (m)
𝐷 = stem diameter (cm)

Numeric constants derived by constructing a model from 
observed biomass measurements of harvested trees.

Biomass converted to carbon by conversion factor (x0.5).



For the rest of the session, I’ll refer to biomass, but know that carbon is roughly half 
the biomass, by weight.

This allometric equation comes from a very famous study by Jerome Chave in 2014, 
and is used across the tropical region to estimate biomass. 

We will use this allometry today in the practical.

There is uncertainty in this allometry, which is dependent on the size of the tree. 
Small trees tend to be over-estimated in their biomass, and large trees tend to be 
under-estimated. It’s important for us to see whether our trees are large enough that 
this will pose a problem.
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Measuring growth from field measurements

Chave et al. (2014), Réjou-Méchain et al. (2017), Sileshi (2014)

Allometric equations (models) relate diameter and height
measurements, and species wood density to biomass (Mg) 
for an individual:

𝐵 = 0.0673× 𝜌×𝐻×𝐷! ".$%&/1000

𝜌 = wood density (g cm-3)
𝐻 = tree height (m)
𝐷 = stem diameter (cm)

Numeric constants derived by constructing a model from 
observed biomass measurements of harvested trees.

Biomass converted to carbon by conversion factor (x0.5).



Now we are going to talk about how we parameterise a model of forest growth.

Starting off very simply, we can track the diameter growth of a tree stem between 
two time points by subtracting the diameter at the first time point from the diameter 
at the second time point.

But, this only gives us a single estimate of growth over a single period.

It also only gives us absolute change, not a rate, which we need to make a general 
model about forest growth over time.

Also, diameter does not relate directly to carbon, or biomass.

The general rule is that carbon by mass is half the biomass.
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Measuring the growth of an individual

𝐺!" = 𝐷" − 𝐷"#$

The simplest method of measuring growth:

• 𝐺'(= Diameter growth over the 
period 𝑡 − 1 to 𝑡

• 𝐷(= Diameter at 𝑡
• 𝐷()*= Diameter at 𝑡 − 1

But:
• Only over a single period.
• Absolute change, not a rate.
• For a single individual we have no 

measure of uncertainty.
• Diameter != carbon (𝐵×0.5)



So, to turn it into a rate we can simply divide by the length of time between time t 
and time t-1. Now our estimate of growth is in units of diameter per unit time. For 
forest models this is mostly in years.
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Measuring the growth of an individual

𝐺! =
𝐷" − 𝐷"#$

𝑇

Let’s add a time term:

• 𝐺' = diameter growth over the 
period 𝑡 − 1 to 𝑡

• 𝐷( = diameter at 𝑡
• 𝐷()* = diameter at 𝑡 − 1
• 𝑇 = census interval length

Now 𝐺' is in units of 𝐷 per 𝑇

Convert diameter to biomass with 
allometric model, then to carbon with 
conversion factor (x0.5).



So that’s how we can measure the growth at the level of a single tree. 

Our ultimate goal is to model the total carbon sink effect of an entire forest 
ecosystem, not just one tree. The total net exchange of carbon between the 
ecosystem and the atmosphere is referred to as the Net Biome Production, or NBP. In 
a closed system, i.e. the planet Earth, we can assume that NBP is the sum of all the 
productivity by photosynthesis in the ecosystem, minus any losses by respiration or 
from disturbance events by fire. 

In our model centred around field measurements of tree growth, we can also define 
NBP as all the growth and recruitment into the woody carbon pool, minus any losses 
due to tree mortality.

The big assumption we are making in our model is that over a long enough timescale 
all the carbon held in the wood returns to the atmosphere through decomposition 
and fire. This isn’t the case in reality, there will be some carbon which stays in the soil 
or is exported out of the system e.g. as dissolved organic carbon in water.  
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Atmospheric
CO2

Wood Woody
debris

Mortality

DecompositionGrowth

Recruitment

Fire

𝐺

𝑅

𝑀

𝐿3

𝑅4

Measuring Net Biome Production (NBP)

𝑁𝐵𝑃 = 𝐺 + 𝑅 −𝑀

NBP = Total net exchange of carbon 
between ecosystem and atmosphere.

𝑁𝐵𝑃 = 𝐺𝑃𝑃 − 𝑅+ − 𝐿,

• 𝑅+ = ecosystem respiration = 
autotrophic (𝑅-) + 
heterotrophic (𝑅.) respiration

• 𝐿, = emissions from disturbance events



Now I want to get onto using population-level measurements of woody biomass to 
parameterise an empirical model of forest productivity and loss.

Production here could also be referred to as the biomass increment, or wood 
production, and encompasses the biomass added by new recruits as well.

When we’re dealing with only two censuses, we can calculate production simply as 
the total biomass recorded in the final census, minus the initial biomass of all those 
stems which survived from the first census to the final census. Then divide this by our 
census interval to get a rate.

Similarly, loss can be calculated as the total biomass in the first census, minus the 
initial biomass of all the survivors divided by the census interval.

These estimates are biased 
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Calculating rates of production and loss

Kohyama et al. (2017, 2019)

Recruitment Growth Mortality

Simple production: 𝑃/ =
0!)0"#

1

Simple loss: 𝐿/ =
0#)0"#

1

• Biomass at final census: 𝐵1
• Biomass of survivors at first census: 𝐵/"
• Biomass at first census: 𝐵"
• Census interval (years): 𝑇

As the census interval increases, 
increase in unmeasured growth, which 
reduces estimates of 𝑃/ and 𝐿/ .



Now I want to get onto using population-level measurements of woody biomass to 
parameterise an empirical model of forest productivity and loss.

Production here could also be referred to as the biomass increment, or wood 
production, and encompasses the biomass added by new recruits as well.

When we’re dealing with only two censuses, we can calculate production simply as 
the total biomass recorded in the final census, minus the initial biomass of all those 
stems which survived from the first census to the final census. Then divide this by our 
census interval to get a rate.

Similarly, loss can be calculated as the total biomass in the first census, minus the 
initial biomass of all the survivors divided by the census interval.

These estimates are biased by census interval. As the census interval increases, we 
will have more trees which grow then die somewhere in the census interval, and 
similarly more trees which recruit and then die within a single census interval. 

We can improve upon these simple equations by calculating them as instantaneous 
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Calculating rates of production and loss

Kohyama et al. (2017, 2019)

Recruitment Growth Mortality

Simple production: 𝑃/ =
0!)0"#

1

Simple loss: 𝐿/ =
0#)0"#

1

• Biomass at final census: 𝐵1
• Biomass of survivors at first census: 𝐵/"
• Biomass at first census: 𝐵"
• Census interval (years): 𝑇

As the census interval increases, 
increase in unmeasured growth, which 
reduces estimates of 𝑃/ and 𝐿/ .

t0 t1

Alive at t0 and t1

Recruited after t0,  
alive at t1

Recruited after t0, 
died before t1

Alive at t0, 
died before t1

T



rates …
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These instantaneous rates are also referred to as logarithmic growth rates.

Not enough time to show you how these rates are derived, but know that they help 
to remove that bias caused by increasing census interval. 

If you want to read more about these methods, see Kohyama et al. 2019 in particular
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Kohyama et al. (2017, 2019)

Independent of census interval.

AKA: logarithmic growth rate estimation

Calculating rates of production and loss

Recruitment Growth Mortality

Instantaneous production: 
P = 23(0!/0"#)(0!)0#)

1× 23($!$#
)

Instantaneous loss: 

L = 23( 0#/0"#)(0!)0#)

1× 23($!$#
)

• Biomass at final census: 𝐵1
• Biomass of survivors at first census: 𝐵/"
• Biomass at first census: 𝐵"
• Census interval (years): 𝑇



Further, we can calculate other metrics to describe the biomass dynamics of a 
system.

The intrinsic rate of change is calculated as the natural log of final biomass over initial 
biomass divided by time. This metric is valuable as it gives us a simple measure of 
whether biomass is increasing or decreasing. It is sometimes referred to as the 
intrinsinc rate of increase in population and community ecology.

Similarly, we can also calculate the rate of net biomass change as the production rate 
minus the loss rate. If dB/dT is positive, biomass is increasing, if negative, decreasing.

r is a proportional increase, while dB/dT is in units of biomass per unit time.

Getting back to our original goal of measuring NBP, dB/dT is also equal to all the 
growth and recruitment fluxes minus the mortality flux, which is the same as NBP.
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Calculating rates of production and loss

Recruitment Growth Mortality

Intrinsic rate of change (𝑟):

r = ln(0!
0#
)/𝑇

If r > 0, biomass increasing.
If r < 0, biomass decreasing.

Rate of net biomass change (𝛿𝐵∕𝛿𝑇):

⁄𝛿𝐵 𝛿𝑇 = 𝑃 − 𝐿 = 𝑃/ − 𝐿/ = 𝑃-88 − 𝐿-88
⁄𝛿𝐵 𝛿𝑇 = 𝐺 + 𝑅 − 𝑀 = 𝑁𝐵𝑃

Kohyama et al. (2017, 2019)



On top of that, we can measure the rate at which biomass travels through our system 
as the average biomass residence time,

Or the mean biomass over the period of the census measurements.

We can also help to parameterise our conceptual model of carbon fluxes in the 
ecosystem by calculating the flux to the dead pool.
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Deriving other metrics
Average biomass residence time: B = 𝐵1/𝑓9:;(

Mean period biomass: 𝐵< = 0!)0#
2=>($!$#

)

Flux to dead wood pool: 𝑓9:;( = 𝐵" − 𝐵/"

Species or size-class specific growth, mortality 
risk and recruitment rates.

Per area growth rates (divide by plot area)

Forecasted biomass production

Koven et al. (2015), Kohyama et al. (2018)



We can add more detail to our model of forest biomass dynamics by understanding 
that there is heterogeneity within tree populations that leads to variation in their 
rates of production and mortality.

This plot shows that as trees get older and larger they generally grow slower.

We can subset the population we measure and calculate rates of production and loss 
for different size classes.
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Species and size-class specific vital rates
Growth rates differ with tree size and 
species.

Simple to subset population and 
calculate rate of production / mortality 
for each species or size class separately, 
assuming sufficient sampling effort.

Can apply these rate estimates to new 
communities.

More on this in the practical…

Bowman et al. (2013)



We also know that growth rates differ with tree species. Tree species vary in their life 
history strategy, i.e. how they grow and remain competitive with other species. This 
graph shows a principal component analysis of tree species from across the world 
that have been separated into groups based on their growth rate, survival rate, and 
maximum size. There is lots of variation.

We can subset the population based on species or other taxonomic groupings. 

These species specific estimates can then be applied to new communities.

By incorporating these more complex elements we are making our model more 
general and realistic, but at a cost of needing more data to parameterise the model.
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Growth rates differ with tree size and 
species.

Simple to subset population and 
calculate rate of production / mortality 
for each species or size class separately, 
assuming sufficient sampling effort.

Can apply these rate estimates to new 
communities.

Species and size-class specific vital rates

Needham et al. (2022)



Now that we have all these metrics derived from our empirical model which describe 
the forest ecosystem and its carbon dynamics, we can use simple statistical analyses 
to try and understand _why_ these metrics might vary among ecosystems. 

For example, we expect that woody production rate will increase with water 
availability, as more water allows greater rates of photosynthesis. We could do a 
simple linear regression of these variables to see if there is any real effect.
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Identifying drivers of biomass change with statistics

We can identify extrinsic and intrinsic drivers of 
growth, mortality, recruitment, using simple 
statistical analyses.

E.g. linear regression of Mean Annual 
Precipitation (MAP) and wood production 
rate (𝑃).

E.g. logistic regression of mortality likelihood 
with drought intensity.

This can help us to predict these vital rates in 
unmeasured ecosystems.

𝑃

Annual precipitation (mm)



Similarly, as vapour pressure deficit (dryness of the air) increases, large trees become 
increasingly at risk from drought induced mortality. We could do a logistic regression 
to predict how mortality rate increases with drought intensity.
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Identifying drivers of biomass change with statistics

We can identify extrinsic and intrinsic drivers of 
growth, mortality, recruitment, using simple 
statistical analyses.

E.g. linear regression of Mean Annual 
Precipitation (MAP) and wood production 
rate (𝑃).

E.g. logistic regression of mortality likelihood 
with drought intensity.

This can help us to predict these vital rates in 
unmeasured ecosystems.

Stovall et al. (2019)



Here are a couple of examples which show how these sorts of empirical models have 
been applied in real research.

This paper used measurements from many plots across wet forests in Africa and 
South America. 

They estimated rates of carbon gain and loss using empirical models very similar to 
the ones I have talked about above, and which you are going to run in the practical.

They found that the carbon sink effect is decreasing in the Amazon, and that this is 
due to increasing mortality (loss rate), rather than a decrease in productivity. In Africa 
however, they found that the sink was remaining stable.

They used a model to describe a system and this raises more questions about why 
this might be happening. To do this next bit of research, they might choose a more 
mechanistic approach.
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In practice: carbon dynamics in wet tropical forests

• Comparison of African (Congo) and South 
American (Amazon) wet forests, using 
field data from plots.

• Net carbon sink is declining in the 
Amazon, but is stable in Africa.

• Amazon sink is declining in Amazon 
because of increased mortality. Growth 
remains stable.

Hubau et al. (2020)



Empirical models of forest growth and mortality are also used in mechanistic models 
of the global carbon cycle, to parameterise the response of forests to climate change, 
and to measure variation in forest behaviour across vegetation types. 

Dynamic Global Vegetation models combine information on biogeography, 
biogeochemistry, biosphysics and vegetation dynamics to understand the carbon 
dynamics of forests in response to climate change.

Luke will cover this much more later on.
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DGVM - Dynamic Global Vegetation Model

• Mechanistic models of vegetation growth, 
response to climate, soil, disturbance.

• Combines biogeography, biogeochemistry, 
biophysics, and vegetation dynamics.

• A component of larger Terrestrial 
Biosphere Models (TBMs), which model 
global biogeochemical cycles

• DGVMs require parameterization using 
observed data.

In practice: forest dynamics in earth system models

Fisher et al. (2014, 2017)

More on this in Luke Smallman’s module!
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What do we know?
• Empirical modelling != mechanistic modelling.

• Allometric equations relate non-destructive field measurements to 
biomass, but carry their own uncertainty.

• Field measurements can be used to model net biome production.

• We can make sensible assumptions to estimate unseen productivity. 

• With a structural model we can estimate unmeasured carbon fluxes.

• With sufficient sampling, we can build more complex models of forest 
dynamics by calculating growth/mortality/recruitment rates across size 
classes and species.

• Using basic statistics we can relate vital rates to potential environmental 
drivers of biomass change.
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• Time series analysis

• Population modelling

• Spatial simulation

Next time…
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Practical

Go to Learn:
i. Modelling Ecosystem Processes
ii. Module 3 - Forest Biomass Dynamics
iii. Week 5

Download all the files to a single folder
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EXTRA SLIDES



N_{T} = number of stems at final census
N_{0} = number of stems at first census
N_{S_{0}} = number of survivors from first census found in final census  
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Estimating unmeasured growth and mortality

Talbot et al. (2014)

Recruits which died before 𝑡*: 𝑈;
N unobserved recruits = 𝑁"×𝑀×𝑅×𝑇

• Number of stems at 𝑡": 𝑁"
• Annual mortality rate: 𝑀 = ln( ?#

?%#
) /𝑇

• Annual recruitment rate: 𝑅 = ln( ?!
?%#

)/𝑇

• Census interval (years): 𝑇

Assume growth rate and wood density of 
𝑈; as plot level mean of small stems.

Assume 𝑈; stems recruit in 1/3 into census 
interval and die 2/3 into census interval.

Unobserved survivors: 𝑈/
Assume death at midpoint of census interval

Unobserved recruits: 𝑈9
Assume grew from 0 at 𝑡*

t0 t1

Alive at t0 and t1

Recruited after t0,  
alive at t1

Recruited after t0, 
died before t1

Alive at t0, 
died before t1

T

𝑈!
𝑈"

𝑈#
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Calculating rates of growth and loss

Recruitment Growth Mortality

Annual production: 

𝑃-88 = (0!
0#
)*/1 × 1 − 0"#

0!

*/1

Annual loss: 

𝐿-88 = 1 − 0"#
0#

*/1

• Biomass at final census: 𝐵1
• Biomass of survivors at first census: 𝐵/"
• Biomass at first census: 𝐵"
• Census interval (years): 𝑇

Kohyama et al. (2017, 2019)


