Biodiversity – Ecosystem Function Relationships in Southern African Woodlands

John Godlee

THE UNIVERSITY of EDINBURGH School of GeoSciences

Cardinale et al. (2009) Liang et al. (2016)

Turnbull et al. (2016)

Mechanisms of the biodiversity-function relationship

Niche complementarity

Niche complementarity

Selection effects

Niche complementarity

Selection effects

Facilitation effects

- 1. How does the biodiversity-function relationship vary over environmental space?
- 2. What are the biotic mechanisms which drive observed biodiversity function effects?

Clarke et al. 2017 Duffy et al. 2017 Liang et al. 2016
135 studies 535 plots 773100 plots

Clarke et al. 2017 Duffy et al. 2017 Liang et al. 2016
135 studies 535 plots 773100 plots

Miombo woodlands:

- Large spatial variation in tree cover
- Low tree species richness
- Affected by disturbance:
 - Fire
 - Herbivory
 - Human resource extraction Frost (1996)

White et al. (1983)

- Higher variation precip. -> Greater biodiversity effect De Boeck et al. (2017)

Q1 - Regional biomass – species richness relationship

Environment

Biodiversity

2. Species composition will have more effect on biomass than species richness (selection effects).

3. Increased aridity will result in stronger richness – biomass relationship due to abiotic facilitation effects.

4. Positive effect of abundance evenness on biomass stocks (Mass ratio).

Q1 - Regional biomass – species richness relationship

Q2 - Canopy structure and woody biomass

Horizontal canopy packing

Vertical canopy profile

Q2 - Canopy structure and woody biomass

- 1. Higher crown shape and canopy layer diversity will result in higher woody biomass.
- 2. Biomass stocks of lower canopy trees will be sensitive to variation in upper canopy layer density.
- 3. Different groups of species will occupy distinct canopy profile layers and will have distinct crown shapes.

Q3 - Canopy architecture and herbaceous biomass

- 1. Higher diversity of canopy trees will lead to greater shading of the understorey.
- 2. Higher diversity of canopy trees will lead to lower herbaceous biomass.

Q3 - Canopy architecture and herbaceous biomass

Q4 – Modelling woodland structural development

- 1. What is the threshold of tree density which excludes herbaceous biomass?
 - a. How does this threshold vary under different tree species compositions and environmental conditions?
- 2. Can variation in tree diversity affect the development of a woodland over time?

Summary

Four questions:

- 1. How does the BEFR vary over environmental gradients?
- 2. Does canopy structural complexity affect woody biomass?
- 3. How does canopy cover affect understorey biomass?
- 4. Can I simulate woodland structural development under different diversity scenarios?

References

Loreau, M., & de Mazancourt, C. (2013). Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. *Ecology Letters*, *16*(SUPPL.1), 106–115.

Liang, J., Crowther, T. W., Picard, N., Wiser, S., Zhou, M., Alberti, G., ... Reich, P. B. (2016). Positive biodiversity-productivity relationship predominant in global forests. *Science*, *354*(6309), aaf8957-aaf8957.

Cardinale, B. J., Srivastava, D. S., Duffy, J. E., Wright, J. P., Downing, A. L., Sankaran, M., ... Loreau, M. (2009). Effects of biodiversity on the functioning of ecosystems: a summary of 164 experimental manipulations of species richness. *Ecology*, *90*(3), 854–854.

Turnbull, L. A., Isbell, F., Purves, D. W., Loreau, M., & Hector, A. (2016). Understanding the value of plant diversity for ecosystem functioning through niche theory. *Proceedings of the Royal Society B: Biological Sciences*, 283(1844), 20160536.

Clarke, D. A., York, P. H., Rasheed, M. A., & Northfield, T. D. (2017). Does Biodiversity–Ecosystem Function Literature Neglect Tropical Ecosystems? *Trends in Ecology and Evolution*, *32*(5), 320–323.

Duffy, J. E., Godwin, C. M., & Cardinale, B. J. (2017). Biodiversity effects in the wild are common and as strong as key drivers of productivity. *Nature*, *549*(7671), 261–264.

White F (1983). Vegetation of Africa – a descriptive memoir to accompany the Unesco/AETFAT/UNSO vegetation map of Africa. Natural Resources Research Report 20, U. N. Educational, Scientific and Cultural Organization (eds Lieth H, Whittaker RH), 7 Place de Fontenoy, 75700 Paris, France

Frost, P. (1996). The Ecology of Miombo Woodlands. In B. M. Campbell (Ed.), *The Miombo in Transition: Woodlands and Welfare in Africa* (pp. 11–55). Bogor, India: Center for International Forestry Research.

Ratcliffe, S., Wirth, C., Jucker, T., van der Plas, F., Scherer-Lorenzen, M., Verheyen, K., ... Baeten, L. (2017). Biodiversity and ecosystem functioning relations in European forests depend on environmental context. *Ecology Letters*, 1414–1426.

De Boeck, H. J., Bloor, J. M. G., Kreyling, J., Ransijn, J. C. G., Nijs, I., Jentsch, A., & Zeiter, M. (2017). Patterns and drivers of biodiversity-stability relationships under climate extremes. *Journal of Ecology*, (May), 1–13.

